Seismological evidence for a multifault network at the subduction interface

0 Comments


  • Rowe, C. D., Moore, J. C., Remitti, F. & the IODP Expedition 343/343T Scientists. The thickness of subduction plate boundary faults from the seafloor into the seismogenic zone. Geology 41, 991–994 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Agard, P., Plunder, A., Angiboust, S., Bonnet, G. & Ruh, J. The subduction plate interface: rock record and mechanical coupling (from long to short timescales). Lithos 320–321, 537–566 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Oncken, O., Angiboust, S. & Dresen, G. Slow slip in subduction zones: reconciling deformation fabrics with instrumental observations and laboratory results. Geosphere 18, 104–129 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bachmann, R. et al. Exposed plate interface in the European Alps reveals fabric styles and gradients related to an ancient seismogenic coupling zone. J. Geophys. Res. 114, B05402 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Angiboust, S., Glodny, J., Oncken, O. & Chopin, C. In search of transient subduction interfaces in the Dent Blanche–Sesia Tectonic System (W. Alps). Lithos 205, 298–321 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wakabayashi, J. & Rowe, C. D. Whither the megathrust? Localization of large-scale subduction slip along the contact of a mélange. Int. Geol. Rev. 57, 854–870 (2015).

    Article 

    Google Scholar
     

  • Nippress, S. E. J. & Rietbrock, A. Seismogenic zone high permeability in the Central Andes inferred from relocations of micro-earthquakes. Earth Planet. Sci. Lett. 263, 235–245 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Woollam, J., Rietbrock, A., Leitloff, J. & Hinz, S. HEX: hyperbolic event extractor, a seismic phase associator for highly active seismic regions. Seismol. Res. Lett. 91, 2769–2778 (2020).

    Article 

    Google Scholar
     

  • Woollam, J. et al. SeisBench—a toolbox for machine learning in seismology. Seismol. Res. Lett. 93, 1695–1709 (2022).

    Article 
    ADS 

    Google Scholar
     

  • León-Ríos, S. et al. 1D-velocity structure and seismotectonics of the Ecuadorian margin inferred from the 2016 Mw 7.8 Pedernales aftershock sequence. Tectonophysics 767, 228165 (2019).

    Article 

    Google Scholar
     

  • Zhang, H. & Thurber, C. H. Double-difference tomography: the method and its application to the Hayward Fault, California. Bull. Seismol. Soc. Am. 93, 1875–1889 (2003).

    Article 

    Google Scholar
     

  • Font, Y., Segovia, M., Vaca, S. & Theunissen, T. Seismicity patterns along the Ecuadorian subduction zone: new constraints from earthquake location in a 3-D a priori velocity model. Geophys. J. Int. 193, 263–286 (2013).

    Article 
    ADS 

    Google Scholar
     

  • García Cano, L. C., Galve, A., Charvis, P. & Marcaillou, B. Three-dimensional velocity structure of the outer fore arc of the Colombia-Ecuador subduction zone and implications for the 1958 megathrust earthquake rupture zone. J. Geophys. Res. Solid Earth 119, 1041–1060 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Meneghini, F. & Moore, J. C. Deformation and hydrofracture in a subduction thrust at seismogenic depths: the Rodeo Cove thrust zone, Marin Headlands, California. Geol. Soc. Am. Bull. 119, 174–183 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Li, J. et al. Downdip variations in seismic reflection character: Implications for fault structure and seismogenic behavior in the Alaska subduction zone. J. Geophys. Res. Solid Earth 120, 7883–7904 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Bebout, G. E. & Penniston-Dorland, S. C. Fluid and mass transfer at subduction interfaces—the field metamorphic record. Lithos 240–243, 228–258 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Fagereng, Å. Geology of the seismogenic subduction thrust interface. Geol. Soc. Lond. Spec. Publ. 359, 55–76 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Kitamura, Y. et al. Mélange and its seismogenic roof décollement: a plate boundary fault rock in the subduction zone—an example from the Shimanto Belt, Japan. Tectonics 24, TC5012 (2005).

  • Rowe, C. D. & Griffith, W. A. Do faults preserve a record of seismic slip: a second opinion. J. Struct. Geol. 78, 1–26 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Meneghini, F. et al. Record of mega-earthquakes in subduction thrusts: the black fault rocks of Pasagshak Point (Kodiak Island, Alaska). Geol. Soc. Am. Bull. 122, 1280–1297 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Nedimović, M. R., Hyndman, R. D., Ramachandran, K. & Spence, G. D. Reflection signature of seismic and aseismic slip on the northern Cascadia subduction interface. Nature 424, 416–420 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Peng, Z. & Zhao, P. Migration of early aftershocks following the 2004 Parkfield earthquake. Nat. Geosci. 2, 877–881 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perfettini, H., Frank, W. B., Marsan, D. & Bouchon, M. Updip and along-strike aftershock migration model driven by afterslip: application to the 2011 Tohoku-Oki aftershock sequence. J. Geophys. Res. Solid Earth 124, 2653–2669 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Shapiro, S. A., Patzig, R., Rothert, E. & Rindschwentner, J. Triggering of seismicity by pore-pressure perturbations: permeability-related signatures of the phenomenon. Pure Appl. Geophys. 160, 1051–1066 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Perfettini, H., Frank, W. B., Marsan, D. & Bouchon, M. A model of aftershock migration driven by afterslip. Geophys. Res. Lett. 45, 2283–2293 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lange, D. et al. Comparison of postseismic afterslip models with aftershock seismicity for three subduction-zone earthquakes: Nias 2005, Maule 2010 and Tohoku 2011. Geophys. J. Int. 199, 784–799 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Allen, T. I. & Hayes, G. P. Alternative rupture‐scaling relationships for subduction interface and other offshore environments. Bull. Seismol. Soc. Am. 107, 1240–1253 (2017).

    Article 

    Google Scholar
     

  • Brengman, C. M. J., Barnhart, W. D., Mankin, E. H. & Miller, C. N. Earthquake‐scaling relationships from geodetically derived slip distributions. Bull. Seismol. Soc. Am. 109, 1701–1715 (2019).

    Article 

    Google Scholar
     

  • Das, S. & Henry, C. Spatial relation between main earthquake slip and its aftershock distribution. Rev. Geophys. 41, 1013 (2003).

  • Neo, J. C., Huang, Y., Yao, D. & Wei, S. Is the aftershock zone area a good proxy for the mainshock rupture area? Bull. Seismol. Soc. Am. 111, 424–438 (2021).

  • Agurto, H., Rietbrock, A., Ryder, I. & Miller, M. Seismic-afterslip characterization of the 2010 Mw 8.8 Maule, Chile, earthquake based on moment tensor inversion. Geophys. Res. Lett. 39, L20303 (2012).

  • Wetzler, N., Lay, T., Brodsky, E. E. & Kanamori, H. Systematic deficiency of aftershocks in areas of high coseismic slip for large subduction zone earthquakes. Sci. Adv. 4, eaao3225 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woessner, J., Schorlemmer, D., Wiemer, S. & Mai, P. M. Spatial correlation of aftershock locations and on-fault main shock properties. J. Geophys. Res. 111, B08301 (2006).

  • Sun, T., Saffer, D. & Ellis, S. Mechanical and hydrological effects of seamount subduction on megathrust stress and slip. Nat. Geosci. 13, 249–255 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wesnousky, S. G. Displacement and geometrical characteristics of earthquake surface ruptures: issues and implications for seismic-hazard analysis and the process of earthquake rupture. Bull. Seismol. Soc. Am. 98, 1609–1632 (2008).

    Article 

    Google Scholar
     

  • Kato, A. & Obara, K. Step-like migration of early aftershocks following the 2007 Mw 6.7 Noto-Hanto earthquake, Japan. Geophys. Res. Lett. 41, 3864–3869 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Bedford, J. et al. A high-resolution, time-variable afterslip model for the 2010 Maule Mw = 8.8, Chile megathrust earthquake. Earth Planet. Sci. Lett. 383, 26–36 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, H., Xu, W., Meng, L., Bürgmann, R. & Baez, J. C. Early aftershocks and afterslip surrounding the 2015 Mw 8.4 Illapel rupture. Earth Planet. Sci. Lett. 457, 282–291 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Churchill, R. M., Werner, M. J., Biggs, J. & Fagereng, Å. Afterslip moment scaling and variability from a global compilation of estimates. J. Geophys. Res. Solid Earth 127, e2021JB023897 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geist, E. L. & Bilek, S. L. Effect of depth-dependent shear modulus on tsunami generation along subduction zones. Geophys. Res. Lett. 28, 1315–1318 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Chalumeau, C., Agurto-Detzel, H., De Barros, L., Charvis, P. & the Rapid Response Team of the 2016 Pedernales Earthquake Spatio-temporal evolution of aftershock and repeater source properties after the 2016 Pedernales earthquake (Ecuador). J. Geophys. Res. Solid Earth 128, e2022JB025353 (2023).

    Article 

    Google Scholar
     

  • Eshelby, J. D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 241, 376–396 (1957).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Aki, K. Generation and propagation of G waves from the Niigata Earthquake of June 16, 1964.: Part 2. Estimation of earthquake moment, released energy, and stress-strain drop from the G wave spectrum. Bull. Earthq. Res. Inst. Univ. Tokyo 44, 73–88 (1966).


    Google Scholar
     

  • Torabi, A. & Berg, S. S. Scaling of fault attributes: a review. Mar. Pet. Geol. 28, 1444–1460 (2011).

    Article 

    Google Scholar
     

  • León-Ríos, S. et al. 3D local earthquake tomography of the Ecuadorian margin in the source area of the 2016 Mw 7.8 Pedernales earthquake. J. Geophys. Res. Solid Earth 126, e2020JB020701 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Miller, P. K. et al. P- and S-wave velocities of exhumed metasediments from the Alaskan subduction zone: implications for the in situ conditions along the megathrust. Geophys. Res. Lett. 48, e2021GL094511 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wang, K. et al. Stable forearc stressed by a weak megathrust: mechanical and geodynamic implications of stress changes caused by the M = 9 Tohoku-Oki earthquake. J. Geophys. Res. Solid Earth 124, 6179–6194 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Dielforder, A., Hetzel, R. & Oncken, O. Megathrust shear force controls mountain height at convergent plate margins. Nature 582, 225–229 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wells, D. L. & Coppersmith, K. J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 84, 974–1002 (1994).

    Article 

    Google Scholar
     

  • Zhu, W. & Beroza, G. C. PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophys. J. Int. 216, 261–273 (2019).

    ADS 

    Google Scholar
     

  • Lomax, A., Virieux, J., Volant, P. & Berge-Thierry, C. in Advances in Seismic Event Location (eds Thurber, C. H. & Rabinowitz, N.) 101–134 (Springer, 2000).

  • Lomax, A., Michelini, A. & Curtis, A. in Encyclopedia of Complexity and Systems Science (ed. Meyers, R. A.) 1–33 (Springer, 2014).

  • Bakun, W. H. & Joyner, W. B. The ML scale in central California. Bull. Seismol. Soc. Am. 74, 1827–1843 (1984).

    Article 

    Google Scholar
     

  • Hardebeck, J. L. & Shearer, P. M. A new method for determining first-motion focal mechanisms. Bull. Seismol. Soc. Am. 92, 2264–2276 (2002).

    Article 

    Google Scholar
     

  • Hardebeck, J. L. & Shearer, P. M. Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bull. Seismol. Soc. Am. 93, 2434–2444 (2003).

    Article 

    Google Scholar
     

  • Fehler, M., House, L. & Kaieda, H. Determining planes along which earthquakes occur: method and application to earthquakes accompanying hydraulic fracturing. J. Geophys. Res. Solid Earth 92, 9407–9414 (1987).

    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Related Posts

    Principal Software Engineer – Robotics Warehouse Systems

    Job title: Principal Software Engineer - Robotics Warehouse Systems Company: Symbotic Job description: through the supply chain. Intelligent software orchestrates advanced robots in a high-density, end-to-end system - reinventing... warehouse automation for increased efficiency, speed…

    Shift Leader

    Job title: Shift Leader Company: MFA Oil Company Job description: , bookkeeping, fuel management, and ensuring that all equipment/store/property is well maintained and in good condition; maintain... Expected salary: Location: Ashland, MO Job date: Wed,…