[ad_1]
Chow, M.-C. & Rich, T. H. Shuotherium dongi, n. gen. and sp., a therian with pseudo-tribosphenic molars from the Jurassic of Sichuan, China. Aust. Mammal. 5, 127–142 (1982).
Wang, Y. Q., Clemens, W. A., Hu, Y. M. & Li, C. K. A probable pseudo-tribosphenic upper molar from the Late Jurassic of China and the early radiation of the Holotheria. J. Vertebr. Paleontol. 18, 777–787 (1998).
Sigogneau-Russell, D. & Ensom, P. Thereuodon (Theria, Symmetrodonta) from the Lower Cretaceous of North Africa and Europe, and a brief review of symmetrodonts. Cretaceous Res. 19, 445–470 (1998).
Luo, Z.-X., Ji, Q. & Yuan, C.-X. Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals. Nature 450, 93–97 (2007).
Kermack, K. A., Lee, A. J., Lees, P. M. & Mussett, F. A new docodont from the Forest Marble. Zool. J. Linn. Soc. 89, 1–39 (1987).
Butler, P. M. An alternative hypothesis on the origin of docodont molar teeth. J. Vertebr. Paleontol. 17, 435–439 (1997).
Kielan-Jaworowska, Z., Cifelli, R. L. & Luo, Z. X. Dentition and relationships of the Jurassic mammal Shuotherium. Acta Palaeontol. Pol. 47, 479–486 (2002).
Kielan-Jaworowska, Z., Cifelli, R. L. & Luo, Z.-X. Mammals from the Age of Dinosaurs: Origins, Evolutions, and Structure (Columbia Univ. Press, 2004).
Averianov, A. O. Early Cretaceous symmetrodont mammal Gobiotheriodon from Mongolia and the classification of Symmetrodonta. Acta Palaeontol. Pol. 47, 705–716 (2002).
Luo, Z. X. & Martin, T. Analysis of molar structure and phylogeny of docodont genera. Bull. Carnegie Mus. Nat. Hist. 2007, 27–47 (2007).
Rougier, G. W., Sheth, A. S., Carpenter, K., Appella-Guiscafre, L. & Davis, B. M. A new species of Docodon (Mammaliaformes: Docodonta) from the Upper Jurassic Morrison Formation and a reassessment of selected craniodental characters in basal mammaliaforms. J. Mamm. Evol. 22, 1–16 (2015).
Butler, P. M. The teeth of the Jurassic mammals. Proc. Zool. Soc. Lond. B 109, 329–356 (1939).
Hopson, J. A. in Major Features of Vertebrate Evolution (ed. Spencer, R. S.) 190–219 (The Paleontological Society, 1994).
Martin, T. & Averianov, A. O. A new docodont (Mammalia) from the Middle Jurassic of Kyrgyzstan, central Asia. J. Vertebr. Paleontol. 24, 195–201 (2004).
Martin, T. & Averianov, A. O. Mammals from the Middle Jurassic Balabansai Formation of the Fergana Depression, Kyrgyzstan. J. Vertebr. Paleontol. 30, 855–871 (2010).
Rich, T. H. et al. Evidence that monotremes and ausktribosphenids are not sister groups. J. Vertebr. Paleontol. 22, 466–469 (2002).
Woodburne, M. O., Rich, T. H. & Springer, M. S. The evolution of tribospheny and the antiquity of mammalian clades. Mol. Phylogenet. Evol. 28, 360–385 (2003).
Flannery, T. F., Rich, T. H., Vickers-Rich, P., Veatch, E. G. & Helgen, K. M. The Gondwanan origin of Tribosphenida (Mammalia). Alcheringa 46, 277–290 (2022).
Mao, F. et al. Fossils document evolutionary changes of jaw joint to mammalian middle ear. Nature https://doi.org/10.1038/s41586-024-07235-0 (2024).
Butler, P. M. A theory of the evolution of mammalian molar teeth. Am. J. Sci. 239, 421–450 (1941).
Van, V. L. M. Serial homology: the crests and cusps of mammalian teeth. Acta Palaeontol. Pol. 38, 145–158 (1994).
Butler, P. M. in Teeth Revisited: Proceedings of the VIIth International Symposium on Dental Morphology Vol. 53 (eds Russell, D. E. et al.) 329–340 (Mémoires du Muséum National d’Histoire Naturelle, 1988).
Martin, T. et al. in Mammalian Teeth – Form and Function (eds Martin, T. & von Koenigswald, W.) 187–214 (Verlag Dr. Friedrich Pfeil, 2020).
Meng, Q.-J. et al. An arboreal docodont from the Jurassic and mammaliaform ecological diversification. Science 347, 764–768 (2015).
Zhou, C.-F., Bhullar, B. A. S., Neander, A. I., Martin, T. & Luo, Z.-X. New Jurassic mammaliaform sheds light on early evolution of mammal-like hyoid bones. Science 365, 276–279 (2019).
Ji, Q., Luo, Z.-X., Yuan, C.-X. & Tabrum, A. R. A swimming mammaliaform from the Middle Jurassic and ecomorphological diversification of early mammals. Science 311, 1123–1127 (2006).
Schultz, J. A., Bhullar, B. A. S. & Luo, Z. X. Re-examination of the Jurassic mammaliaform Docodon victor by computed tomography and occlusal functional analysis. J. Mamm. Evol. 26, 9–38 (2019).
Butler, P. M. Evolutionary transformations of the mammalian dentition. Zoosyst. Evol. 77, 167–174 (2001).
Van Valen, L. M. Homology and causes. J. Morphol. 173, 305–312 (1982).
Butler, P. M. in Development, Function and Evolution of Teeth (eds Butler, P. M. & Joysey, K. A.) 439–453 (Academic, 1978).
Parrington, F. R. On the Upper Triassic mammals. Philos. Trans. R. Soc. B 261, 231–272 (1971).
Crompton, A. W. & Jenkins, F. A. Molar occlusion in Late Triassic mammals. Biol. Rev. 43, 427–458 (1968).
Crompton, A. W. & Sun, A.-L. Cranial structure and relationships of the Liassic mammal Sinoconodon. Zool. J. Linn. Soc. 85, 99–119 (1985).
Kemp, T. S. The Origin and Evolution of Mammals (Oxford Univ. Press, 2005).
Wang, Y. Q. & Li, C. K. Reconsideration of the systematic position of the Middle Jurassic mammaliaforms Itatodon and Paritatodon. Palaeontol. Pol. 67, 249–256 (2016).
Luo, Z. X., Cifelli, R. L. & Kielan-Jaworowska, Z. Dual origin of tribosphenic mammals. Nature 409, 53–57 (2001).
Averianov, A. O. & Lopatin, A. V. Itatodon tatarinovi (Tegotheriidae, Mammalia), a docodont from the Middle Jurassic of western Siberia and phylogenetic analysis of Docodonta. Paleontol. J. 40, 668–677 (2006).
Sigogneau-Russell, D. & Godefroit, P. A primitive docodont (Mammalia) from the Upper Triassic of France and the possible therian affinities of the order. C. R. Acad. Sci. 324, 135–140 (1997).
Datta, P. Earliest mammal with transversely expanded upper molar from the Late Triassic (Carnian) Tiki Formation, South Rewa Gondwana Basin, India. J. Vertebr. Paleontol. 25, 200–207 (2005).
Averianov, A., Lopatin, A., Krasnolutskii, S. & Ivantsov, S. New docodontans from the Middle Jurassic of Siberia and reanalysis of Docodonta interrelationships. Proc. Zool. Inst. Russ. Acad. Sci. 314, 121–148 (2010).
Sigogneau-Russell, D. Docodonts from the British Mesozoic. Acta Palaeontol. Pol. 48, 357–374 (2003).
Sigogneau-Russell, D. A new therian mammal from the Rhaetic locality of Saint-Nicolas-de-Port (France). Zool. J. Linn. Soc. 78, 175–186 (1983).
Patterson, B. Early Cretaceous Mammals and the Evolution of Mammalian Molar Teeth Vol. 13 (Chicago Natural History Museum, 1956).
Clemens, W. A. & Kielan-Jaworowska, Z. in Mesozoic Mammals: the First Two-Thirds of Mammalian History (eds Lillegraven, J. A. et al.) 99–149 (Univ. California Press, 1979).
Meng, J. Mesozoic mammals of China: implications for phylogeny and early evolution of mammals. Natl Sci. Rev. 1, 521–542 (2014).
Sulej, T. et al. The earliest-known mammaliaform fossil from Greenland sheds light on origin of mammals. Proc. Natl Acad. Sci. USA 117, 26861–26867 (2020).
Jäger, K. R., Gill, P. G., Corfe, I. & Martin, T. Occlusion and dental function of Morganucodon and Megazostrodon. J. Vertebr. Paleontol. 39, e1635135 (2019).
Crompton, A. W. The dentitions and relationships of the southern African Triassic mammals, Erythrotherium parringtoni and Megazostrodon rudnerae. Bull. Brit. Mus. (Nat. Hist.) Geol. 24, 399–443 (1974).
Davis, B. M. Evolution of the tribosphenic molar pattern in early mammals, with comments on the “dual-origin” hypothesis. J. Mamm. Evol. 18, 227–244 (2011).
Schultz, J. A. & Martin, T. Function of pretribosphenic and tribosphenic mammalian molars inferred from 3D animation. Naturwissenschaften 101, 771–781 (2014).
Mao, F.-Y. et al. Integrated hearing and chewing modules decoupled in a Cretaceous stem therian mammal. Science 367, 305–308 (2020).
Flynn, J. J., Parrish, J. M., Rakotosamimanana, B., Simpson, W. F. & Wyss, A. E. A Middle Jurassic mammal from Madagascar. Nature 401, 57–60 (1999).
Yuan, C.-X., Ji, Q., Meng, Q.-J., Tabrum, A. R. & Luo, Z.-X. Earliest evolution of multituberculate mammals revealed by a new Jurassic fossil. Science 341, 779–783 (2013).
Lopatin, A. & Averianov, A. Kielantherium, a basal tribosphenic mammal from the Early Cretaceous of Mongolia, with new data on the aegialodontian dentition. Acta Palaeontol. Pol. 52, 441–446 (2007).
Rich, T. H. et al. The mandible and dentition of the Early Cretaceous monotreme Teinolophos trusleri. Alcheringa 40, 475–501 (2016).
Mao, F., Zhang, C., Liu, C. & Meng, J. Fossoriality and evolutionary development in two Cretaceous mammaliamorphs. Nature 592, 577–582 (2021).
Mao, F., Li, Z., Hooker, J. J. & Meng, J. A new euharamiyidan, Mirusodens caii (Mammalia: Euharamiyida), from the Jurassic Yanliao Biota and evolution of allotherian mammals. Zool. J. Linn. Soc. 199, 832–859 (2023).
Liu, J. & Olsen, P. The phylogenetic relationships of Eucynodontia (Amniota: Synapsida). J. Mamm. Evol. 17, 151–176 (2010).
Krause, D. W. et al. Skeleton of a Cretaceous mammal from Madagascar reflects long-term insularity. Nature 581, 421–427 (2020).
Panciroli, E. et al. New species of mammaliaform and the cranium of Borealestes (Mammaliformes: Docodonta) from the Middle Jurassic of the British Isles. Zool. J. Linn. Soc. 192, 1323–1362 (2021).
Panciroli, E. et al. Postcrania of Borealestes (Mammaliformes, Docodonta) and the emergence of ecomorphological diversity in early mammals. Palaeontology 65, e12577 (2022).
Wallace, R. V. S., Martínez, R. & Rowe, T. First record of a basal mammaliamorph from the early Late Triassic Ischigualasto Formation of Argentina. PLoS ONE 14, e0218791 (2019).
Swofford, D. L. Phylogenetic Analysis Using Parsimony, v4.0b10 (Sinauer Associates, Inc, 2002).
Mao, F., Zhang, C. & Meng, J. Morphological dataset of mammaliamorphs and phylogenetic analysis codes (MrBayes 3.2.4 and PAUP*4.0a152). Zenodo https://doi.org/10.5281/zenodo.10597270 (2024).
Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
Gavryushkina, A., Welch, D., Stadler, T. & Drummond, A. J. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput. Biol. 10, e1003919 (2014).
Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Total-evidence dating under the fossilized birth–death process. Syst. Biol. 65, 228–249 (2016).
Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–921 (2001).
Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39, 306–314 (1994).
Stadler, T. Sampling-through-time in birth-death trees. J. Theor. Biol. 267, 396–404 (2010).
Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth-death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).
Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).
Geyer, C. J. Practical Markov chain Monte Carlo. Stat. Sci. 7, 473–483 (1992).
Luo, Z.-X. et al. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature 548, 326–329 (2017).
King, B. & Beck, R. M. Tip dating supports novel resolutions of controversial relationships among early mammals. Proc. R Soc. B 287, 20200943 (2020).
Ronquist, F. et al. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61, 973–999 (2012).
King, B. Bayesian tip-dated phylogenetics in paleontology: topological effects and stratigraphic fit. Syst. Biol. 70, 283–294 (2021).
Rowe, T. Definition, diagnosis, and origin of Mammalia. J. Vertebr. Paleontol. 8, 241–264 (1988).
Averianov, A. O., Lopatin, A. V. & Leshchinskiy, S. V. New interpretation of dentition in Early Cretaceous docodontan Sibirotherium based on micro-computed tomography. J. Mamm. Evol. https://doi.org/10.1007/s10914-023-09682-4 (2023).
Van Valen, L. An analysis of developmental fields. Dev. Biol. 23, 456–477 (1970).
[ad_2]
Source link